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In the last ten years a new technology has come increasingly into use: the 
chemical molding of reactive oligomers which produces simultaneously the mate- 
rial and the finished product [I]. The technological cycle includes partial 
solidification of the mixture in the mixing chamber, pumping through channels 
into the mold, final solidification of the composition in the mold. The na- 
ture of the processes of heat and mass exchange at different stages has a de- 
cisive influence on the technological regimes of conversion, the quality of 
the material, and the operational characteristics of the product. Heat and 
mass exchange can be correctly described only with the use of a kinetic model 
that is perfectly adequate to the real process. The present article deals 
with the solidification of epoxy resin by an amine-type solidifier, viz., 
metaphenylene diamine. For this system a kinetic model was suggested in [2- 
4]. We investigate its mathematical correctness, the qualitative behavior 
of the solution, and provide experimental confirmation of the adequacy of the 
description of the kinetics. 

The mechanisms of interaction of epoxy groups with amines include the formation of hy- 
droxyl groups in the course of the reaction catalyzing the interaction of primary (A l) and 
secondary (A 2) amine with the epoxy (E) group. Besides, a highly reactive epoxy-alcohol 
complex (EC) forms. Thus, the mechanism of the reactions of solidification is represented 
by the following kinetic scheme [2-4]: 

K, K~ 
AI-~E'-~A~- C; A~+ E--~A3~- C; 

Ke K[ 
C~-E ~(EC); A I~-(EC)~Az-~2C, 

5 
& + (EC) -,- & + 2C 

(i) 

(C are alcohol groups). 

From the scheme we can obtain kinetic equations of the type of balances describing the 
process of solidification: 

dA1 
= -- K1A1E -- K[A I (EC); 

dt 

dA, 
dt 

dA3 = K~A~ ( ~ C )  q- K,A2E; 
dt 

( ~ )  
dt 

K~ (EC)AI--ZG (EC) &; 

dE 

dt 
= -- KIAz E-- K2A2 E; 

(2) 

A. V, 
SSR, Minsk. 
June, 1990. 

Lykov Institute of Heat and Mass Exchange, Academy of Sciences of the Belorussian 
Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 58, No. 6, pp. 1003-1011, 
Original article submitted June 22, 1989. 

786 0022-0841/90/5806-0786512.50 �9 1990 Plenum Publishing Corporation 



d__CC = K~A~ E~- K2A2E+2K~A~ (EC) + 2K2A= (EC); 
dt 

(EC) = KegC. 

Relation (2) together with the initial conditions 

E =  Eo; C := 0; A 1 = A~o; A= - -  0; Aa = 0 fi'or [ - ~  0 

and the equation of energy 

(3) 

pc = div(;~vT) q- Q-~a (4) 
Ot 

fully determine the problem if the temperature dependences of the constants of the reactions 
KI, KI', K2, K 2' and of equilibrium K e are known (where Q is the thermal effect of the reac- 
tion; p is the depth of transformation). 

For the isothermal case the problem reduces to Eqs. (2) with conditions (3). This is 
a Cauchy problem for a dynamic system of nonlinear differential equations. Since there are 
singular points, a qualitative analysis of the system (2) is indispensable. 

The first three integrals are 

A~ - -  Aa + Y = const; A2 + 2Aa - -  Y = const; C + ~ + 2 (EC) = const, (5) 

where 

Y= E0-- E--(EC)- (6) 

Relations (5) and the initial conditions (3) yield the equations of the material balance 

i dA~ = _ K~A~ E(y) _ K~A~Ke C (Y) ~ (r), 
dt 

dY ...: = KxA~ g(Y) -}- K[A~KoC (Y) E (Y) + Ks A2KeC (Y) ~, (g) -t- K2 E(Y)A2, 
dt 

(7) 

where 

<~ Vi2Y- +K')~+4(-Y+~)K;q; E(Y) : y IE0 -- 2r-- + E0 

(8) 

C(Y) = [E0-- E(Y)]/[I / -  2KeE(Y)I. 

Expre s s ions  (7 ) ,  ( 8 ) ,  (6)  c o n t a i n  seven sought  v a r i a b l e s  [A1, Az, A3, E, C, (EC), Y]. 
The i r  q u a l i t a t i v e  i n v e s t i g a t i o n  has to  be c a r r i e d  out  in a s e v e n - d i m e n s i o n a l  phase  space .  
The f o l l o w i n g ,  however ,  has to  be borne in mind: a) t he  e q u a t i o n  fo r  As, which i s  con t a ined  
in (5 ) ,  i s  i s o l a t e d ;  b) in accordance  wi th  (2)  the  complex (EC) i s  in l o c a l  e q u i l i b r i u m  wi th  
the  epoxy groups and the  a l c o h o l s ,  and i t  i s  t h e r e f o r e  a l s o  de te rmined  by them; c) in accord -  
ance  wi th  the  d e f i n i t i o n  of  Y, of  the  t h r e e  v a r i a b l e s  Y, E, C on ly  two a re  independen t ,  Con- 
s e q u e n t l y ,  i t  s u f f i c e s  to  c a r r y  out  the  a n a l y s i s  in a f o u r - d i m e n s i o n a l  phase space ,  e . g . ,  in 
the  v a r i a b l e s  {A1, Y, A2, C}. 

Let  us c o n s i d e r  the  q u a l i t a t i v e  behav io r  of  the  autonomous sys tem (7) wi th  the  s e l e c t e d  
initial data. The introduction of the variables x = At, y = E0 - Y transforms it to 

J-5- x = - -  x [(K~ - -  K~) E (@ + Yl ~ P (x, y), 
dt 

d__.yy = __p (x, y)-]-(~ --- 9x -]- y) E(y) (K;KeC (y) @ K2) ~ Q (x, y), 
dt 

(9) 
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where 

~3 = 2 A l o -  Eo, 
(lO) 

(ii) 

To the case ~ = 0 there corre- 

E (y )  = - } -  [ 2 y  - -  E o - -  + 

In deriving these relations we took it that according to [2-4] K 2 = O. Besides that it was 
assumed that there are no secondary amines in the initial system. 

By definition of the variables under consideration, x ~ O, y ~ O. We will therefore 
investigate the phase-plane diagram in the first quadrant of the plane (x, y) where the sys- 
tem (9) has the following rest points: i) the set of points of the form Ml(x, 0), where 

~ 0 is arbitrary; 2) the point M2(O, -8) with $ ! O. From the equation of the material 
balance (5) follows 

which means that the first case is realized only with $ ~ 0. 
sponds the singular rest point M(0, 0). 

We investigate the behavior of the integral curves in the vicinity of the rest points. 
In dependence on the value of the parameter $ two fundamentally different cases occur. 

With ~ < 0 (deficiency of primary amines) unopened epoxy groups remain after termination 
of the reaction because one primary amine can open two epoxy rings only. In that case the 
final state of the system (x = 0, y = -8) can be a priori determined from the equations of 
the reactions by the initial data. 

With ~ > 0 (excess of primary amines), after termination of the reaction there remains, 
generally speaking, some number of primary (A 1 = x) and secondary (~2 = ~ - 2x) amines. In 
that case the final state of the medium can be determined only after the system has been 
solved. 

The case 8 = 0 (stoichiometry) can be classed as belonging to the first or to the sec- 
ond case. 

Let us consider the case ~ < 0. We replace the variables: x = x, y = y + $. In the 
vicinity of the singular point (with the new variables the origin of coordinates): 

d; = D $  + o ~), 
dt 

(12) 

d~ = (D~ -- D3) -x -- D~ q- 0 (x, g), 
dt 

where 

DI = - ~  [--  (2~I q- E%-]- K~'} -}- V'(2~ q- E o -]- K J )  2 - -  4~Ke-']; 

D,=--K~ DI K~ , ' 

2K;KeDI(Eo--D1) 
D~ = -- I -+- 2K DI 

e 

K~KeDI(Eo--DO 
D~= l q_2KeD1 

The roots of the characteristic equation of the system are %z = D2; %2 = - D4. The 
root %z is smaller than zero because D 2 = -Kz'(-D I - 8) - KIDz, but -8 > Dl (--8 is equal to 
the total number of epoxy groups remaining at the end of the reaction, i.e., after all the 
amines have been spent, and Dz is the number of free epoxy groups at the end of the reaction; 
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Fig. i. 
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Phase-plane diagram: a: i) DG > i; 2) D6 = i; b) 
of the true integral curves. 

therefore D I + ~ = -(EC)f < 0, where (EC)f is the final number of complexes (EC)). It fol- 
lows from the definition of D 4 that D~ > 0. Consequently, I i < 0, 12 < 0. The singular 
point in the plane (x, y) is therefore a stable node. An analysis in the phase plane reduces 
to the study of the integral curves of the equation 

& 7 ' 

where 

D5 = 1 D~ _ 1 + 2I('2KeD1 ( E o -  Dx) . 
t 

D2 (1 + 2K e D~) [KI(D~+ ~) -- K~D~] 

D~ K~K~D~ (go - -  DO D6-- 

The form of the integral curves [of Eq. (i3)] depends on the value of the coefficient 
D 6. With D 6 > 1 (Fig. la) the separatrix is y = Dvx , where 

D7 = - -  
D5 

1 - -  D 6 

[/~1D1 - -  K[ (D 1 -j- ~)1 (1 - -  2KeD~) 
= 2 @ 2~/ (eD ~ (Eo - -  D~) @ [KI(D~+~)--K1D,[(1 + 2KeOl) 

lies higher than the straight line of the initial values y = 2x because with D 6 > 1 we have 
D 7 > 2. For any point of the straight line of the initial data there exists a fully d~ter- 
minate integral curve from the family under consideration that passes through that poiat. 
Consequently, some point on that straight line corresponds to the specified set of initial 
compositions (Ai0, E0 < 2Al0). 

_ The case D 6 = 1 corresponds to a dicritical node. In this case the separatrices ~re 
x = 0. The existence and uniqueness of the solution of the Cauchy problem are proved ma- 
logously to the one described above. 

For D6 < 1 we also have a dicritical node. 

The asymptotics of the solution of Eq. (13) for t + = is: 

x ---- xo exp D 2 (t -- to), 

i Y-o exp [D2 ( t - -  to)] for  D 6 > 1, 

f_ 
t go exp [Do D~ ( t - -  to)] for  D6 < 1, 

for D6 = 1, 
(14) 

where x 0 and Y0 are the corresponding values of the primary amines and of the degree of 
transformation at the instant t = to, respectively. Formula (14) makes it possible to short- 
en considerably the time of calculating actual variants. 
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Fig. 2. Three-dimensional repre- 
sentation (x, y, A2) of the four- 
dimensional phase-plane diagram 
(x, y, c, A2). 

Let us analyze the case B = 0. In this variant the linear terms vanish, and the sub- 
sequent terms of the expansion have to be used. In the phase plane, system (9) reduces to 

dxd9 = B _}_ B 9_9_ ._t_ 0 (9) _1.. 0 ( ~ ) (15)  

Here 

K, - -  K Eo (2K  - -  KI) 

K;KEo 
Bo = + K EoKI 

It can be shown that the passage to the limit ~ ~ 0 entails the change of the coefficients 
D s and D6 in Eq. (13) into B I and B 2 of Eq. (15), respectively. Thus, the perturbation of 
the problem with respect to the parameter ~ is regular at least in the region $ 5 0, and 
qualitatively the phase-plane diagram in this region looks alike in both cases: $ < 0 and 

= 0. 

For a clearer understanding it is more expedient to analyze the phase-plane diagram in 
the case of stoichiometry ($ = 0). In the plane (x, y) it has the same form as the phase- 
plane diagram for $ < 0 in the plane (2, y). 

The reduction of the initial Cauchy problem (2), (3) to system (7) with relations (6), 
(8) modifies in fact the problem because the initial conditions become part of the initial 
equations. As a result only one integral curve is realized out of the entire family of in- 
tegral curves plotted for certain values of B l and B 2 (fixed E0); we will call it the true 
curve. The change of initial concentration of epoxy groups and correspondingly of primary 
amines (for maintaining the stoichiometric relation) shifts the initial mapped point along 
the straight line of the initial values y = 2x. 

Let us investigate the phase-plane diagram of the true integral curves (Fig. ib). Each 
true integral curve with B 6 > 1 reaches the origin of coordinates (the rest point) at its 
own slope a, equal to: 

~ z = a r c t g  2--I- B I - - 1  " 

K[-~I ) . Since with B2 > i, according to (15), 
\ 

For x0 + ~ ~ ~ chnin = arctg 2 ~- K2-- 

K=' > KI', we have ~min > 7 = arctg 2 (7 is the slope of the straight line of initial values). 
As x 0 decreases, the angle ~ increases, and with x = x0 crit = KI/2Ke(K2' -- KI') it becomes 
equal to ~/2 (here B 2 = i). To this corresponds the initial concentration of the epoxy 
groups, the parameter of the problem is 

KI 

The analysis presented above is correct for K 2' > Kl', i.e., when the speed of the cata- 
lytic transformation of secondary amines into tertiary ones is higher than the speed of the 
catalytic transformation of primary into secondary ones. In case K 2' ~ KI', the parameter 
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Fig. 3. Phase-plane diagram: a) in the plane (At, A2) with 
< 0 (mapped with fixed value of the parameter ~), b) in the 

three-dimensional space (At, y, A 2) with variable parameter. 

B 2 < i, and with any initial concentration E 0 the integral curves form a dicritical node~ 
The physical cause of the fundamentally different nature of the curves is obvious. When 
K I' ~ Ka', then the primary amines vanish at first, and the opening of the remaining epoxy 
rings proceeds on account of the secondary amines (here x § 0), for K 2' > K I' the speeds of 
transformation of primary and secondary amines are comparable, and x is nonzero up to '~he 
end of the process. 

It can be seen from the presented dependences and from their graphic illustration (Fig. 
ib) that with B 2 ~ i the integral curves in the phase-plane diagram intersect. This anbig- 
uity is a consequence of the transition from the seven-dimensional phase space of system (2) 
to the plane space of problem (7). The initial concentration as parameter changed ove:: to 
the right-hand side of system (7), and this also is the reason why the curves intersect. In 
the three-dimensional phase space (x = At, Y, C) there is no intersection. In fact, let the 
points E0, I and E0, 2 be points of the line of initial values. For them B 2 > i, and in the 
phase plane (x, y) the integral curves intersect. However, it follows from (8) that 

ac = e__q_c I + oc  
OEo aSo lE=~o~st aE aE~ 

>0, 

since 

ac. >o, ?-q<o, ~ 
aEo ]E=co~st a E a Eo 

Therefore in the three-dimensional phase space (x, y, C) the integral curves, to which higher 
initial concentration of the epoxy groups corresponds, always have higher concentratior of 
alcohols, too, i.e., there is no intersection of the integral curves~ 

Let us analyze the nature of the change of concentrations of all the chemical components: 
A I, A2, C, E, Y. It follows from system (7) that dAi/dt < 0, dY/dt > 0. Therefore dx/dt < 
0, dy/dt < 0, and the mapping point in the phase-plane diagram, starting on the straight 
line of initial data, moves from right to left (as was proved earlier on, ~ > ~). In accor- 
dance with relations (7), (8), the concentrations of the epoxy groups and alcohols also 
change monotonically: dC/dt > 0, dE/dt < 0. The change of the secondary amines is of a 
more complex nature. At the initial period of the reaction they increase, and from some in- 
stant onward they decrease (with t § 0 and t + ~ A 2 = 0). From dependences (6) and (8) we 
can obtain the equation of line dAz/dt = 0 in the three-dimensional phase space: 

X:~ 
K~K~,C, 

K~ + K C, (2K~ + KI) 
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The entrance angle of the curve dAa/dt = 0 to the rest point is $ = arctg(2 + I/BI), 
i.e., 7 < 8 < ~, which means that there is always intersection of the curve dA2/dt = 0 with 
the path of the system. In the case ~ < 0 all the qualitative traits of the phase-plane dia- 
gram, revealed with ~ = 0, are retained. However, now there can be intersection of the inte- 
gral curves even in the three-dimensional space (x m A, y, C) since one point in such a space 
can correspond to different values of 8- In that case transition to the four-dimensional 
space (x, y, C, A 2) is indispensable. In the three-dimensional space (x, y, A2), on account 
of the existence of the bond A 2 - y + 2x = 8, different planes correspond to different val- 
ues of ~-(Fig. 2). 

The integral curves for each fixed 
the four-dimensional space (x, y, C, Aa). 
coordinate planes on the lines y = 2x - 

For the case 8 < 0 (excess of amines) 
phase-plane diagram in the plane (Al, Aa). 

2A~ 

The integral curves start from the axis 0Al 
and end on the straight line (16) (Fig. 3a) 

intersect each other, but they are "led apart" in 
The planes in which the curves lie intersect the 

in the plane (xy) and A 2 = y - ~ in the plane (yA2). 

it is expedient to carry out the analysis of the 
At the rest point 

+ A~ = ~ (16) 

at the angle ~/4 [this follows from system (2)] 

Let us determine the entrance angle of the integral curves to the straight line of the 
state of rest (the angle 9)- From the system (2) we find (K 2 = 0): 

dA~ = _ KIAI E + KIAI (E C) -- K;A= (EC) 

dA1 KIAI E + KIAI (EC) 

Expanding theright-hand sides in the vicinity of the singular straight line and retaining 
the first terms of the expansion, we obtain 

qo = arctg (--  1 4- B2A2/A1), 

where the sign ~ relates to the final state of the system. 

With ~i > Al* = 6/(2 + B2 -I) the angle ~ < 0, with ~l < At* ~ > 0. Since the integral 
curves start at a negative angle, the ones intersecting the line of final state with ~i = At* 
have an extremum. With ~i = At* the extremum is attained at the rest point (then Az* = 
B2-18/(2 + B2-1). The value of B 2 can be expressed through the initial concentration At0: 

As At0 increases from Al0 min = 6/2, B= and correspondingly At* increase, and A2, decreases. 

The integral curves in the plane (At, A 2) may intersect each other. The intersection 
of curves relating to different $ is reduced by the transition to the three-dimensional 
phase space (At, y, A2) (Fig. 3b). In such a space each family of integral curves plotted 
according to the parameter lies in its own plane. 

The intersection of the integral curves with fixed 8 is eliminated if the concentration 
of the alcohols is also brought into consideration. The projection of the integral curves 

onto the plane (y, C) is found from the equation 

C = ( E o - - y ) / [ l + K  E(y)], 

where E(y) is determined by relation (i0). The shape of the integral curves in this plane 
depends on the value of E0, not on 8- With 8 ~ 0 the integral curves end on the axis y = 0 
at the points C i = E0i. When there is a deficiency of amines, the abscissa of the rest 
points is equal to -6- 

It follows from our analysis of the phase-plane diagram of the initial system (2) that 
for all values of the constants of the speed of the reactions and initial concentration of 
the components, the problem has a stable solution. 

Verification of the kinetic model from the point of view of adequacy of describing the 
process of solidification of epoxy compositions was carried out by comparing the results of 
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Fig. 4. Overheating of the solidified 
composition at different initial tem- 
peratures of the process of polymeriza- 
tion: i) experiment; 2) theory. AT, 
~ t, min. 

the calculated magnitude of overheating of the reacting mixture with the experimental data 
obtained on a specially devised experimental installation. This is a cylindrical tank with 
thick walls. On the outer boundaries of the tank thermostating was specified for the iateral 
surface, and adiabatic conditions at the end faces. 

The kinetics and heat exchange with a view to the spatial inhomogeneity of the ter~era- 
ture fields and depths of transformation, due to heat removal through the walls to the en- 
vironment, to the final dimensions of the volume, and to intense chemical heat liberation, 
were calculated by numerically solving the equations of heat conduction (4) with heat libera- 
tion in the region occupied by the composition, and of the kinetics of solidification !7). 
We used the finite difference method with splitting into physical and chemical factors and 
into directions [5]. With the splitting procedure used, the chemical reactions were calcu- 
lated at the first half-step, conductive redistribution of heat in accordance with the ex- 
ternal conditions at the second half-step. The values of the kinetic, thermodynamic, and 
thermophysical parameters were taken from [2, 3], the geometric parameters and the thermo- 
physical properties of the material of the walls correspond to the conditions of the e~peri- 
ment [5]. The results of the calculations for the center of the volume are presented Jn Fig. 
4. It can be seen from the figure that the calculation by the macrokinetic scheme is Jn 
good agreement with the measurements, especially at lower initial temperatures of the process 
of solidification (To = 60, 65~ That the theoretical values are somewhat higher than the 
experimental ones for higher temperatures of thermostating the lateral surface can be as- 
cribed to a possible small shift of the thermocouple from the center of the volume. Ntmeri- 
cal modeling shows that with increasing To the nonuniformity of temperature distributicn 
over the volume greatly increases. The error of the indications of the thermocoup!e dne to 
a possible shift therefore increases substantially. 

Thus, on the basis of the qualitative investigation of the system of equations of the 
kinetics (2) it was shown that the macrokinetic model under consideration expresses the regu- 
larities of the kinetics of solidification: the final composition of the compound corre- 
sponds to the stable rest point. We studied the structure of the phase-plane diagram of the 
system in dependence on the parameter characterizing the deviation of the composition of the 
compound from stoichiometry. We analyzed the different regimes realized in dependence on 
the ratio of the speeds of catalytic reactions. We obtained confirmation of the adequacy 
of the chosen kinetic model which can be used for modeling processes of flow and heat eK- 
change accompanying the chemical molding of reactive oligomers. 

NOTATION 

A i, A2, A 3, primary, secondary, tertiary amines, respectively; C, alcohol groups; E, 
epoxy groups; Ki, K2, Kl', K2', reaction constants; Ke, constants of equilibrium; (EC), 
epoxy alcohol complex; Q, thermal effect of a reaction; $, depth of transformation; Y, num- 
ber of open epoxy groups; p, density; c, specific heat; X, thermal conductivity; T, temoera- 
ture; t, time; x, y, variables; Mi, rest points; %1, %2, roots of the characteristic eqla - 
tion; Di, Bi, coefficients; ~, slope of the integral curve. 
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